АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Теория автоматического управления»

по основной профессиональной образовательной программе по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» (уровень бакалавриата)

Направленность (профиль): Технологии, оборудование и автоматизация машиностроительных производств

Общий объем дисциплины – 3 з.е. (108 часов)

Форма промежуточной аттестации – Зачет.

- В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:
- ОПК-4: способность участвовать в разработке обобщенных вариантов решения проблем, связанных с машиностроительными производствами, выборе оптимальных вариантов прогнозируемых последствий решения на основе их анализа;
- ПК-12: способность выполнять работы по диагностике состояния динамики объектов машиностроительных производств с использованием необходимых методов и средств анализа;
- ПК-16: способность осваивать на практике и совершенствовать технологии, системы и средства машиностроительных производств, участвовать в разработке и внедрении оптимальных технологий изготовления машиностроительных изделий, выполнять мероприятия по выбору и эффективному использованию материалов, оборудования, инструментов, технологической оснастки, средств диагностики, автоматизации, алгоритмов и программ выбора и расчетов параметров технологических процессов для их реализации;
- ПК-17: способность участвовать в организации на машиностроительных производствах рабочих мест, их технического оснащения, размещения оборудования, средств автоматизации, управления, контроля и испытаний, эффективного контроля качества материалов, технологических процессов, готовой продукции;
- ПК-18: способность участвовать в разработке программ и методик контроля и испытания машиностроительных изделий, средств технологического оснащения, диагностики, автоматизации и управления, осуществлять метрологическую поверку средств измерения основных показателей качества выпускаемой продукции, в оценке ее брака и анализе причин его возникновения, разработке мероприятий по его предупреждению и устранению;
- ПК-4: способность участвовать в разработке проектов изделий машиностроения, средств технологического оснащения, автоматизации и диагностики машиностроительных производств, технологических процессов их изготовления и модернизации с учетом технологических, эксплуатационных, эстетических, экономических, управленческих параметров и использованием современных информационных технологий и вычислительной техники, а также выбирать эти средства и проводить диагностику объектов машиностроительных производств с применением необходимых методов и средств анализа;

Содержание дисциплины:

Дисциплина «Теория автоматического управления» включает в себя следующие разделы: **Форма обучения заочная. Семестр 7.**

- 1. Общие принципы управления. Классификация систем управления. Примеры систем автоматического управления. Задачи, возникающие при проектировании систем автоматического управления. Понятие автоматического управления, состав, структура и обобщенная схема автомата. Примеры средств автоматизации технологических процессов. Информационные аспекты управления техническими системами. Особенности автоматического управления промышленными объектами и производственными
- Особенности автоматического управления промышленными объектами и производственными процессами машиностроительных производств. Основные принципы автоматического управления. Проблемы современной ТАУ. Типы и классификация САУ. Типовые элементы САУ..
- **2.** Основные структурные элементы систем автоматического управления.. Основные виды типовых элементов САУ. Объекты регулирования, измерительные элементы (датчики), усилительные элементы, исполнительные элементы (серводвигатели), регулирующие элементы,

корректирующие устройства. Примеры технической реализации типовых элементов САУ. Математическое описание (математические модели) типовых элементов САУ.

3. Анализ непрерывных линейных САУ. Основные задачи анализа непрерывных линейных САУ. Способы описания линейных непрерывных САУ. Описание линейных САУ и их типовых элементов с использованием уравнений состояния (фазовых координат). Описание линейных САУ и их типовых элементов с помощью линейных дифференциальных уравнений и передаточных функций. Структурные схемы САУ. Основные характеристики линейных систем – управляемость и наблюдаемость системы. Типовые динамические звенья САУ. Временные и частотные характеристики типовых динамических звеньев. Правила преобразования структурных схем САУ. Передаточные функции САУ по управляющему и возмущающему воздействию. Построение частотных характеристик САУ по частотным характеристикам ее динамических звеньев. Методы оценки состояния динамики

САУ по управляющему и возмущающему воздействию. Построение частотных характеристик САУ по частотным характеристикам ее динамических звеньев. Методы оценки состояния динамики объектов систем автоматического управления процессами машиностроительных производств с использованием необходимых методов и средств анализа. Понятие устойчивости САУ. Методы анализа устойчивости САУ. Критерии устойчивости САУ. Оценка качества процессов регулирования. Время регулирования, перерегулирование, коэффициенты ошибок..

- **4.** Синтез непрерывных линейных САУ. Постановка задачи и основы проектирования САУ. Задача синтеза автоматических управляющих устройств и систем. Методы синтеза регулятора. Синтез параллельных, последовательных и последовательно-параллельных корректирующих устройств. Частотный метод синтеза САУ..
- **5. Цифровые системы автоматического управления..** Понятие импульсного (прерывистого) управления. Особенности описания и классификация дискретных САУ. Импульсный элемент и его математические модели. Восстановление непрерывного сигнала по дискретной выборке. Цифровой регулятор и его математические модели. Описание с использованием разностных уравнений состояния. Дискретные преобразования Лапласа и Фурье; передаточная функция и характеристики цифровых устройств. Анализ цифровых регуляторов во временной и частотной областях. Методы анализа линейной дискретно-аналоговой (цифровой) САУ. Передаточная функция и частотные характеристики разомкнутой и замкнутой цифровой САУ.
- **6. Нелинейные и оптимальные САУ..** Способы описания и анализ нелинейных систем. Понятие оптимальных систем управления техническими объектами. Целевая функция оптимального автоматического управления и методы ее оптимизации. Адаптивные системы управления..

Разработал: доцент кафедры ТиТМПП Проверил:

И.В. Курсов

Декан ТФ А.В. Сорокин